Publicatii

2021

1) Enhancing stability of hybrid perovskite solar cells by imidazolium incorporationWeb of Science

Authors:  Tomulescu, Andrei Gabriel;  Leonat, Lucia Nicoleta;  Neatu, Florentina;  Stancu, Viorica;  Toma, Vasilica;  Derbali, Sarah;  Neatu, Stefan;  Rostas, Arpad Mihai;  Besleaga, Cristina;  Patru, Roxana;  Pintilie, Ioana

Published:Aug 2021 in Solar Energy Materials and Solar Cells

DOI: 10.1016/J.SOLMAT.2021.111096

Abstract

Hybrid perovskites based solar cells have demonstrated high conversion efficiency but poor long-term stability. This study reports on the results obtained after doping the CH3NH3PbI2.6Cl0.4 mixed halide perovskite with imidazolium (C3N2H5+, denoted IM) on the “A site” position of a perovskite, to improve photovoltaic performances and stability of hybrid perovskite solar cells. The perovskite films were investigated exhaustively by different characterization techniques: X-ray diffraction, Atomic Force Microscopy, Scanning Electron Microscopy, UV–Vis, X-ray Photoelectron Electron Paramagnetic Resonance spectroscopies, Impedance Spectroscopy and Incident Photon-to-Electron Conversion Efficiency. The photovoltaic parameters were determined by measuring the IV curves of the corresponding solar cells. The amount of IM inserted in the perovskite play a key role on the film properties. The calculated new tolerance factors according to the „globularity factor” are experimentally proved and thus at doping concentrations greater than 20% for CH3NH3PbI2.6Cl0.4 perovskite the 3D structure is no longer obtained. However, below this value, the IM substituted perovskite film possesses an improved film quality and crystallinity as compared to the pristine film. Substituting MA+ with IM+ provides a favorable way to reduce recombination processes and shows great potential to achieve high stability, and an improved charge generation, resulting in increased PCE values. We find that the optimal percentage of imidazolium incorporation to achieve better stability of solar cells is 6%.

Graphical abstract

Image 1

2) Tetragonal-Cubic Phase Transition and Low-Field Dielectric Properties of CH3NH3PbI3 CrystalsWeb of Science

Authors:  Roxana E. Patru;  Hamidreza Khassaf;  Iuliana Pasuk;  Mihaela Botea;  Lucian Trupina;  Constantin-Paul Ganea;  Lucian Pintilie;  Ioana Pintilie

Published:Aug 2021 in Materials

DOI: 10.3390/MA14154215

Abstract

The frequency and temperature dependence of dielectric properties of CH3NH3PbI3 (MAPI) crystals have been studied and analyzed in connection with temperature-dependent structural studies. The obtained results bring arguments for the existence of ferroelectricity and aim to complete the current knowledge on the thermally activated conduction mechanisms, in dark equilibrium and in the presence of a small external a.c. electric field. The study correlates the frequency-dispersive dielectric spectra with the conduction mechanisms and their relaxation processes, as well as with the different transport regimes indicated by the Nyquist plots. The different energy barriers revealed by the impedance spectroscopy highlight the dominant transport mechanisms in different frequency and temperature ranges, being associated with the bulk of the grains, their boundaries, and/or the electrodes’ interfaces.

Graphical abstract

SPRIJINIT DE

Working together for a green, competitive and inclusive Europe


PARTENERI

...
...
...
...
...

LINK-URI UTILE